Complex Ginzburg - Landau Equations in HighDimensions and Codimension two

نویسنده

  • Fanghua Lin
چکیده

Complex Ginzburg-Landau Equations were originated in the theory of Super-conductivity, 13]. When Ginzburg-Landau parameter chosen to be a special constant, the equations are called self-dual vortex equations that were carefully studied by Jaae and Taubes 16]. For the vortex equation on a Riemannian surface , one considers an open, smooth domain with, possibly empty, smooth boundary @. Let L be a complex line bundle over equipped with a Hermetian metric < :; : >. For a section u of L we write ju(x)j 2 =< u(x); u(x) >. Then the Ginzburg-Landau functionals are deened for a section u of L and a unitary connection A on L. The self-dual case of this functional is given by E(u; A;) = Z jdAj 2 + jr A uj 2 + 1 4 (1 ? juj 2) 2 dx (I.1) where dx is the volume form of some xed KK ahler metric on. As usual we adopt the following notations : r A u = (d ? iA)u ;

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Amplitude equations near pattern forming instabilities for strongly driven ferromagnets

A transversally driven isotropic ferromagnet being under the influence of a static external and an uniaxial internal anisotropy field is studied. We consider the dissipative Landau-Lifshitz equation as the fundamental equation of motion and treat it in 1 + 1 dimensions. The stability of the spatially homogeneous magnetizations against inhomogeneous perturbations is analyzed. Subsequently the dy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007